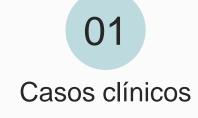


Enfermedad de Menckes

Marina Jiménez Monedero - R3 Pediatría
Dr. Francisco Gómez y Dra. Rocío Jadraque – Sección de Neuropediatría
Hospital General Universitario de Alicante Dr. Balmis



Siglas utilizadas

APP	Amenaza de parto prematuro
DGNI	Diabetes gestacional no insulinizada
EEG	Electroencefalograma
DPM	Desarrollo psicomotor
EMA	Enfermedad de Menckes atípica
EMC	Enfermedad de Menckes clásica
FAEs	Fármacos antiepilépticos
IOT	Intubación orotraqueal
IRVA	Infección respiratoria de vías altas
PC	Perímetro craneal

PL	Punción lumbar		
RMN	Resonancia magnética		
sc	Subcutáneo		
sco	Síndrome del cuerno occipital		
SG	Semanas de gestación		
ТС	Tomografía computerizada		
тто	Tratamiento		
UCIP	Unidad de Cuidado Intensivos Pediátricos		
VPA	Ácido valproico		
XLR	Herencia ligada al X recesiva		

Índice

Conclusiones

Bibliografía

01

Casos clínicos

Paciente 🛕

Sexo

Hombre

Edad

4 meses

Motivo de ingreso

 Estatus epiléptico

Antecedentes familiares

Madre con hipoacusia neurosensorial bilateral

Antecedentes perinatales y personales

Gestación controlada	Normoevolutiva 💙
A término	39+1 SG
Parto	Cesárea urgente
APGAR	5 /9/9
Somatometría al nacimiento	Peso 2915 gr (p16) Longitud 50.5 cm (p60) PC 38 cm (p98)
Neurodesarrollo	
Ganancia pondo-estatural	*•
Inmunizaciones	Servicio de Pediatría

Enfermedad actual

3/8/2023 Ingreso por episodio de cianosis autolimitado

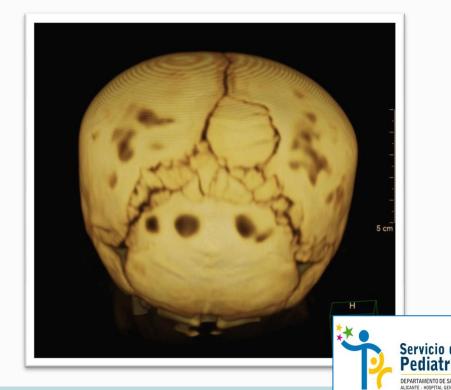
Evolución favorable y alta

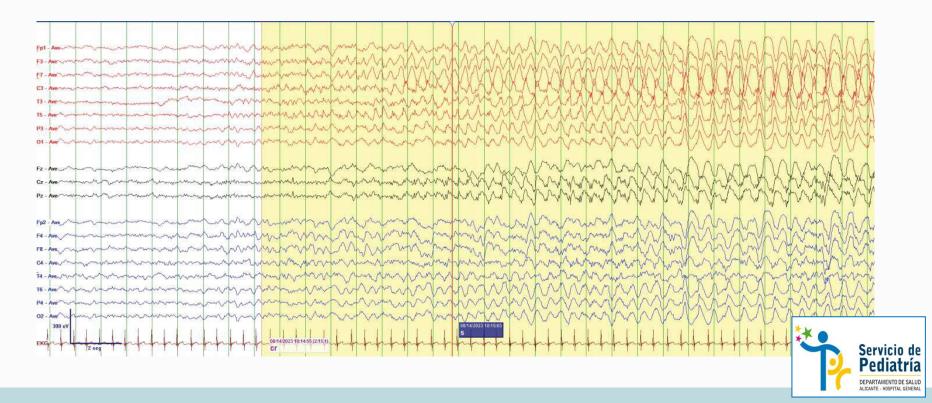
10/8/2023 Ingreso en Hospital de Orihuela por crisis a estudio

 Desconexión del medio, desviación de la mirada a la izquierda y movimientos de chupeteo

11/8/2023 Ingreso en UCIP de HGUA por estatus epiléptico

- TC craneal + EEG + RMN cerebral
- FAEs: Levetiracetam + VPA




No signos de LOE ni de hemorragia Braquicefalia y abundantes huesos wormianos en suturas lambdoideas

Abundante incidencia de actividad epileptiforme frontal izquierda que provoca <u>4 crisis eléctricas</u> durante el registro, dos de ellas con correlato clínico

RMN cerebral

Signos de retraso en la mielinización y de pérdida de sustancia blanca

Evolución 1

16/8/2023 Alta a Planta de Hospitalización de nuestro Centro

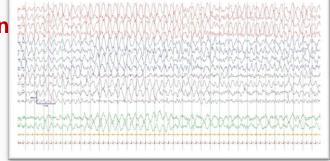
- Exploración física: Hipotonía axial, somnoliento e hipoactivo pero reactivo
- Analítica sangre
 → Ceruloplasmina 4 mg/dL / Cobre 29 μg/dL
- IC a Dermatología → Análisis del pelo
- Estudio genético
- FAEs: Fenitoína + Clobazam

Análisis del pelo 🖒 Microscopio óptico

Pili torti

Imagen obtenida de: Fernandez Ballesteros MD, Gómez-Moyano E. Visual Dermatology: Menkes Disease. J Cutan Med Surg. 2021; 25(2): 211

Tricorrexis nodosa


Imagen obtenida de: https://en.wikipedia.org

21/8/2023 Reigreso en UCIP por estatus convulsivo

- Perfusión continua de midazolam + Vigabatrina
- <u>EEG</u>: Estatus epiléptico por crisis de repetición focales centro-temporales derechas, secundariamente generalizadadas
- IOT y sedación con Propofol + Brivaracetam + Fenobarbital

Epilepsia refractaria o farmacorresistente

Evolución

21/8/2023 Reigreso en UCIP por estatus convulsivo

- Perfusión continua de midazolam + Vigabatrina
- <u>EEG</u>: Estatus epiléptico por crisis de repetición focales centro-temporales derechas, secundariamente generalizadadas
- IOT y sedación con Propofol + Brivaracetam + Fenobarbital

Sospecha de Enfermedad de Menckes

24/8/2023 Inicio terapia con histidinato de cobre SC

25/8 <u>Despistaje de errores innatos del matabolismo</u>
 Acilcarnitinas + ácidos orgánicos falsamente elevados

Evolución

28/8/2023 Cese del estatus → Extubación

 30/8 EEG de control: actividad de vigilia lentificada y actividad focal paroxística bitemporal, sin crisis

31/8/2023 Paso a Planta de Hospitalización

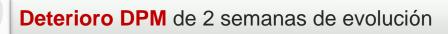
- Evolución favorable
- Mejoría del nivel de alerta, fija la mirada, sonríe y emite sonidos
- Persiste hipotonía axial previa al ingreso

8/9/2023 Alta a Domicilio → Seguimiento en Neuropediatría

- FAEs: Vigrabatrina + Brivaracetam + Fenobarbital
- TTO: Histinato de cobre SC

Cariotipo 46,XY

Gen	Variante	Cigosidad	Clasificación	Enfermedad
ATP7A NM_000052.7	ChrX:g. 78020962del c.2799del; p. (Phe933Leufs*26)	Hemicigosis	Variante patogénica	Enfermedad de Menkes (XLR)


La presencia en hemicigosis de la variante patogénica en el gen ATP7A confirma el diagnóstico de enfermedad de Menckes en el paciente, con patrón de herencia ligada al X recesiva

Seguimiento => 5 meses después...

Inicio de terapia con ACTH

Encefalopatía aguda en relación a descompensación de crisis que precisa ingreso en UCIP de H. la Fe durante 14 días

- Infección respiratoria por Rinovirus
- Edemas y alcalosis metabólica hipopotasémica → Se suspende ACTH

Al alta → Crisis autolimitadas (5-6 episodios/día)

- Desviación de la mirada e hipotonía
- Terapia 4 FAEs + Cu-histidina

Paciente B

Sexo

Hombre

Edad

• 3 meses

Motivo de ingreso

• Estatus parcial complejo

Antecedentes perinatales y personales

Gestación controlada	DGNI y APP en 33 SG
A término	34 SG
Parto	Eutócico 💙
APGAR	9/10/10
Somatometría al nacimiento	Peso 1990 g (P28); Longitud 42.5 cm (P11) PC 29 cm (P3)
Neurodesarrollo	
Ganancia pondoestatural	Fallo de medro
Inmunización	Servicio d

Enfermedad actual

23/1/2024 Ingreso en Hospital de la Vila por IRVA por SARS-CoV-2

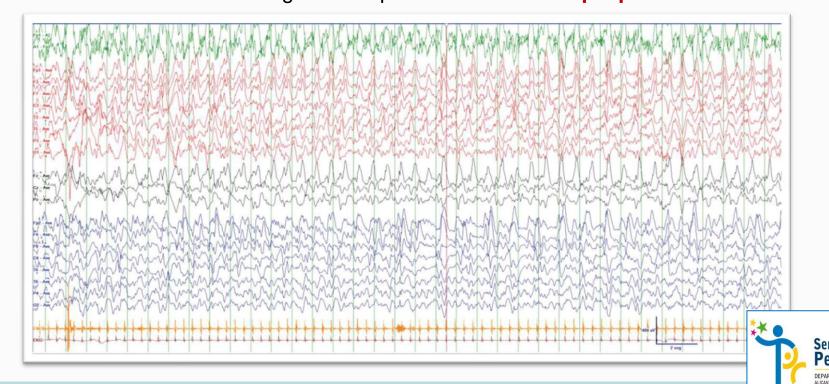
- A las 24h: Crisis parciales complejas → Desviación de la mirada y cervical a la dcha con parpadeo unilateral e hipertonía de miembros
- Episodio de hiperflexión de 4 miembros con movimientos espasmódicos rítmicos y desconexión del medio → Sospecha de síndrome de West

25/1/2024 Ingreso en HGUA para canalización de acceso venoso

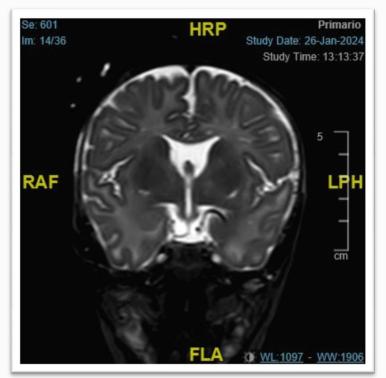
- Desconexión del medio, desviación de la mirada a la izq y chupeteo
- IC a Dermatología → Pili torti y tricorrexis nodosa/nudos
- EEG + RMN cerebral
- FAEs: Levetiracetam + fenitoína

Exploración física

Macrocefalia relativa, FANT Pelo áspero de coloración grisácea


Ojos pequeños y orejas de implantación límite Hernia inguinal Hipotonía cervical marcada

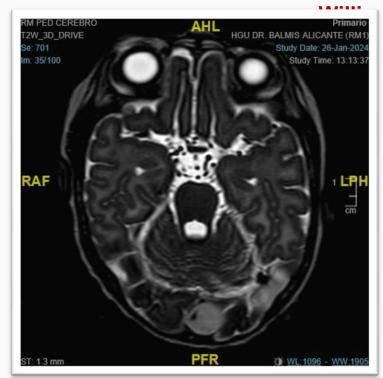
Actividad bioeléctrica cerebral de vigilia desestructurada interferida por actividad paroxística epileptiforme continua multifocal alternante con correlato clínico
Registro compatible con estatus epiléptico

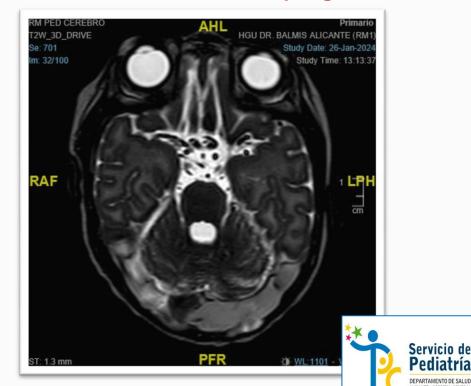


Retraso en la mielinización Áreas de restricción a la difusión

Ausencia parcial del septum pellucidum

Tortuosidad de los vasos a nivel del polígono de Willis




RMN

Retraso en la mielinización Áreas de restricción a la difusión Ausencia parcial del septum pellucidum

Tortuosidad de los vasos a nivel del polígono de

Evolución

Sospecha de Enfermedad de Menckes

28/1/2024 Estatus clínico → Ingreso en UCIP

- Analítica sangre
 → Ceruloplasmina < 3 mg/dL / Cobre 25 μg/dL
- FAE: Fenitoína + ác. Valproico + lacosamida + clonazepam

30/1/2024 Paso a Planta de Hospitalización

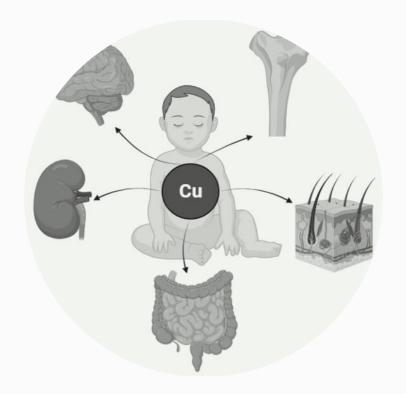
- Estudio genético
- Inicio terapia con histidinato de cobre SC
- FAEs: VPA + lacosamida

7/2/2024 Alta a domicilio → Seguimiento por Neuropediatría

Estudio genético

Cariotipo 46,XY

Gen	Variante	Cigosidad	Clasificación	Enfermedad
ATP7A NM_000052.7	c.3627delA p.Gly1210Valfs* 6	Hemicigosis	Variante patogénica (PVS1, PM2)*	Enfermedad de Menkes (XLR, #309400, ORPHA:565)


*PVS1: variante nula o nonsense; PM2: variante ausente o extremadamente infrecuente en controles

Asesoramiento genético familiar

Se recomienda realizar el estudio dirigido en la madre del paciente y familiares en riesgo de haberla heredado (hermanos y rama materna si se confirma que la madre es portadora)

02

Enfermedad de Menckes

Introducción

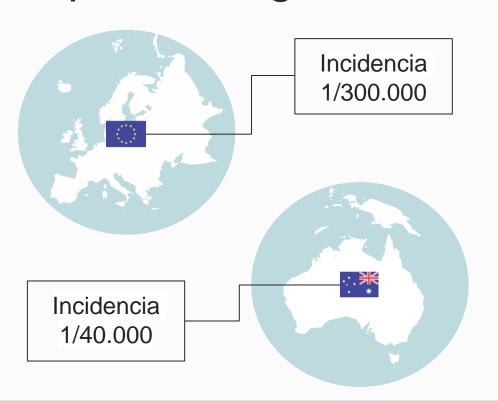
La enfermedad de Menckes (EM) fue descrita por primera vez en 1962 por el neuropediatra y escritor austriaco-estadounidense John Hans Menckes Es un **trastorno congénito raro del metabolismo del cobre** con manifestaciones multisistémicas graves caracterizado por <u>neurodegeneración progresiva</u>, <u>anomalías del tejido conectivo y cabello acerado y escaso</u>, causado por una variante patogénica en el gen ATP7A

ORPHA: 56

Sinónimos:

- Enfermedad del cabello rizado de Menkes
- Síndrome de Menkes

Prevalencia: Desconocido

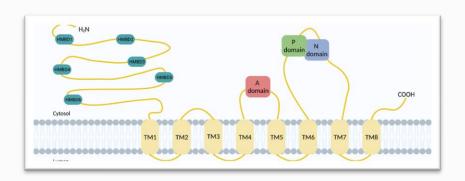

Herencia: Recesiva ligada al cromosoma X

Edad de inicio o aparición: Neonatal

CIE-10: E83.0 **CIE-11**: <u>5C64.0Y</u> **OMIM**: #309400

Epidemiología

Los hombres son los afectados debido a la herencia recesiva ligada al X


Las mujeres son portadoras asintomáticas*

*Se han reportado casos de mujeres con síntomas atenuados de la enfermedad

Etiopatogenia

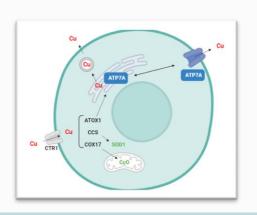
Variante patogénica del gen ATP7A en el cromosoma Xq13.3 que codifica una proteína ATPasa transportadora de cobre

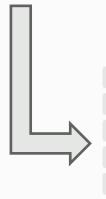
Hay descritas unas **300 variantes**: delecciones, inserciones, mutaciones sin sentido, con cambio de sentido...

NO hay correlación genotipo-fenotipo

Ausencia de proteína ATP7A se asocia a la EM clásica

Bajos niveles de proteína funcional se atribuyen a otros subtipos de la enfermedad (**EMA y SCO**)




Etiopatogenia

El transportador ATP7A se expresa mayoritariamente en el intestino donde media la absorción sistémica del cobre

En otros tejidos (excepto el hígado) tiene una doble función:

- Eliminación del exceso de cobre de la célula
- La biogénesis de **enzimas cobre-dependientes** en el aparto de Golgi

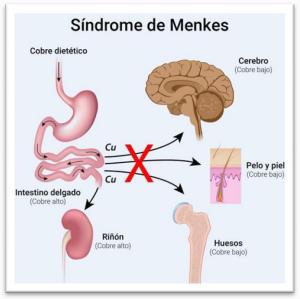
Citocromo C oxidasa Superóxido dismutasa

Lisil oxidasa

Sulfhidrilo oxidasa

Tirosinasa

Respiración celular


Eliminación de radicales libres

·Síntesis de colágeno o elastina

Síntesis de queratina

Producción de melanina.

Dopamina β-hidroxilasa • Síntesis de catecolaminas

Clínica

Imagen obtenida de: Tümer Z, Møller L. Menkes disease. Eur J Hum Genet. 2010; 18: 511– 518

Enfermedad de Menckes clásica (EMC)

- Lactante varón "sano" hasta los 2-3 meses cuando debuta con epilepsia refractaria, hipotonía y pérdida de los hitos del desarrollo
- Pelo escaso, hipopigmentado y ensortijado
- Mejillas llenas, micrognatia, palidez cutánea
- Dificultades en la alimentación y fallo de medro → Gastrostomía
- En periodo neonatal: ictericia prolongada, hipotermia, prematuridad
- Sin tratamiento: fallecimiento a los 3 años por infección respiratoria

Enfermedad de Menckes atípica (EMA)

- Lactante hombre o mujer con hipotonía y/o retraso DPM leves
- Puede haber crisis de inicio más tardío (> 6 meses)
- Déficit intelectual leve
- Ataxia
- Alteraciones del tejido conectivo

Clínica

Imagen obtenida de: Tümer Z, Møller L. Menkes disease. Eur J Hum Genet. 2010; 18: 511–518

Síndrome del cuerno occipital (SCO)

- Cuernos occipitales: calcificaciones en forma de cuña en el lugar de unión del músculo trapecio y del esternocleidomastoideo al hueso occipital
- Capacidad intelectual normal o límite
- Disautonomía (diarrea crónica)
- Laxitud articular y de piel
- Hernia inguinal
- Divertículo de vejiga
- Alteraciones dentales
- Escoliosis

Neuropatía motora distal ATP7A-relacionada


- Debut en la adultez similar a la enfermedad de Charcot-Marie-Tooth
- No comparte ninguna característica con EM

Radiología

- Atrofia cerebral/cerebelosa con ventriculomegalia
- Retraso de la mielinización
- Alteración en la difusión de los núcleos de la base
- Tortuosidad vascular
- Hematomas subdurales
- Huesos wormianos
- Ensanchamiento metafisario
- Osteoporosis

Imágenes obtenidas de: Means MJ, Santos FJR, Sotardi ST. Beslow LA, Menkes Disease: Clinical Presentation and Imaging Characteristics. Neuropediatrics. 2022; 53(3): 218-220.

Hiperintensidad de la sustancia blanca de lóbulos temporales y pérdida de volumen cerebelosa

Difusión restringida de los globos pálidos

Alteraciones analíticas

Concentración sérica	Rango normal	EMC	EMA / SCO
Cobre	75-150 μg/dL (Nacimiento - 3 meses: 20-70 μg/dL)	<40 µg/dL	40-75 μg/dL
Ceruloplasmina	200-450 mg/L (Nacimiento - 3 meses: 50-200 mg/L)	10-100 mg/L	120-220 mg/L

Diagnóstico neonatal → Catecolaminas en plasma:

- Ratio dopamina/noradrenalina > 0.2
- Ratio ácido dihidroxifenilacético (DOPAC)/dihidroxifenilglicol > 5

(Sensibilidad y especificidad 100%)

Review > J Inherit Metab Dis. 2023 Mar;46(2):163-173. doi: 10.1002/jimd.12590. Epub 2023 Feb 3.

ATP7A-related copper transport disorders: A systematic review and definition of the clinical subtypes

143 Publicaciones

162 pacientes*

87% Hombres 13% Mujeres Edad: 27 días a 57 años

N = 156	EMC (62,3%)	EMA (11,1%)	SCO (22,6%)
Edad media al debut	5 meses (Nacimiento – 5 años)	7 meses (Nacimiento – 22 meses)	5 años y 8 meses (Nacimiento – 50 años)
Fallecimiento	40,6% Edad media 2,3 años	11,1%	13,5% Edad media 25,3 años

La **infección** es la principal causa de muerte (31,8%)

^{*6} Pacientes (3,7%) se incluyen en el subgrupo de neuropatía motora distal ATP7A-relacionada

Review > J Inherit Metab Dis. 2023 Mar;46(2):163-173. doi: 10.1002/jimd.12590. Epub 2023 Feb 3.

ATP7A-related copper transport disorders: A systematic review and definition of the clinical subtypes

143 Publicaciones

162 pacientes*

87% Hombres 13% Mujeres Edad: 27 días a 57 años

- En el EMC son significativamente más frecuentes:
 - El retraso del neurodesarrollo (98,6%) → Más grave
 - Crisis epiléticas (85,1%)
 - Hipotonía (79,2%)
 - Las dificultades en la alimentación (31,7%)
 - Niveles bajos de ceruloplasmina (89.9%)
 - Las alteraciones del pelo (91,1%) → Hipopigmentado, rizado y enredado
- La discapacidad intelectual aparece tanto en EMC (moderada-grave) como EMA (leve)
- La **ataxia** es más común en la EMA (27,8%)

Del total de pacientes:

Pili torti en el 94,3%

Tortuosidad intracraneal en el 85.1%

Review > J Inherit Metab Dis. 2023 Mar;46(2):163-173. doi: 10.1002/jimd.12590. Epub 2023 Feb 3.

ATP7A-related copper transport disorders: A systematic review and definition of the clinical subtypes

143 Publicaciones

162 pacientes*

87% Hombres 13% Mujeres Edad: 27 días a 57 años

- En el SCO son significativamente más frecuentes:
 - Disfunción autonómica (48,6%): diarrea (72,2%), náuseas/vómitos (22,2%), inestabilidad térmica (44,4%) e hipotensión ortostática (38,9%)
 - Piel laxa (67,6%)
 - Herniaciones (54,1%): más común la hernia inguinal (85,7%)
 - Divertículo de vejiga (70,3%) e infecciones del tracto urinario (31,3%)
 - Estenosis de píloro (2,6%)
 - Alteraciones dentales (29,7%)
 - Hiperlaxitud articular (45,9%) y luxaciones articulares (40,5%)
 - Exostosis óseas (27%)

Diagnóstico

Diagnóstico definitivo

Clínica + tricoscopia + pruebas de imagen Niveles de cobre y ceruloplasmina

Período neonatal Ratio de catecolaminas en plasma

Diangnóstico prenatal

Estudio genético

Exoma dirigido

Diagnóstico diferencial

- Encefalopatías epilépticas y del desarrollo
- Errores congénitos del metabolismo: aminoacidurias, trastornos mitocondriales, déficit de biotinidasa...
- Síndrome de Ehlers-Danlos
- Síndrome de Marfan
- Síndromes de cutis laxa
- Osteogénesis imperfecta
- Maltrato infantil

Tratamiento

No efectividad de ningún FAE

Dosis de cobre-histidina:

- Lactantes < 1 año: 500 μg/día en 2 dosis, SC
- ≥1 año: 250 µg /día en 1 dosis, SC

Monitorización de niveles séricos de cobre y ceruloplasmina cada 6 meses

Duración: indefinido excepto si aparición de efectos secundarios o ausencia de eficacia

Inicio de la terapia en neonatos asintomáticos con diagnóstico de EM

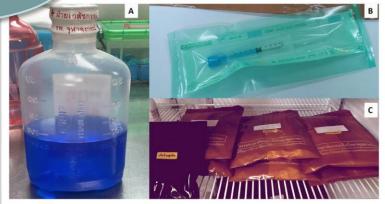


Imagen obtenida de: Panichsillaphakit E, Kwanbunbumpen T, Chomtho S, Visuthranukul C. Copper-histidine therapy in an infant with novel splice-site variant in the ATP7A gene of Menkes disease: the first experience in South East Asia and literature review. BMJ Case Rep. 2022; 15(4): e247937.

NO se recomienda en lactantes > 30 días de vida que han iniciado síntomas neurológicos

Pronóstico

¡Siempre que se inicie antes del debut!

El tratamiento con **cobre-histidina es eficaz** para:

- Mejorar el neurodesarrollo
- Disminuir la frecuencia y gravedad de las convulsiones
- Podría aumentar la supervivencia (NNT 1,27-2,6)

El genotipo no afecta en la respuesta

La administración oral es inefectiva: queda retenido en el intestino

Investigación

Elesciomol (medicamento huérfano)

Tansportador de cobre que ha demostrado aumentar la supervivencia en ratones con EM

Propiedades anticancerígenas

Recomendaciones

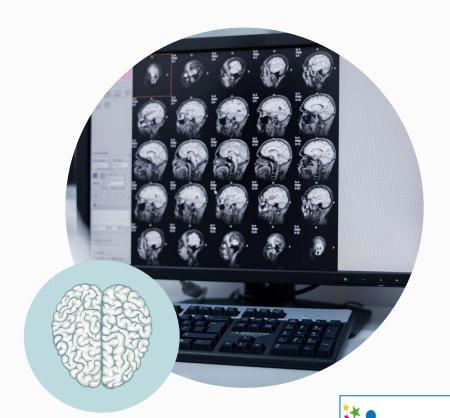
Evaluación y seguimiento				
Neurológica	RMN cerebral y EEG al debut Seguimiento en Neuropediátría			
DPM	Derivación a Atención Temprana			
Nutrición	Evaluación nutricional al debut y seguimiento por Gastroenterología			
Divertículo vejiga	Ecografía abdominal anual			
Alteraciones musculoesqueléticas	Derivación a Traumatología y Rehabilitación			

Consejo genético

- Estudio genético dirigido de la madre del caso índice
- Si se confirma que la madre es portadora:
 - Estudio de hermanos y hermanas del caso índice
 - Estudio de la rama materna
 - Se recomienda diagnóstico prenatal en sucesivos embarazos
- Los supervivientes de la EM trasmitirán la variante patogénica a todas sus hijas (no a los hijos)

03

Epilepsia del lactante


Encefalopatías epilépticas y del neurodesarrollo

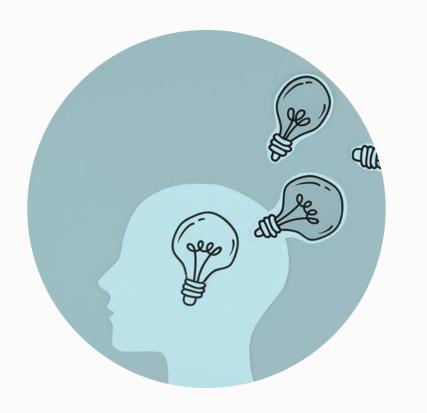
Síndrome de West (espamos infantiles) Síndrome de Dravet Epilepsia del lactante con crisis focales migratorias Encefalopatías de causa metabólica

Otras encefalopatías de causa genética

Síndromes autolimitados

Epilepsia genética con crisis febriles plus Epilepsia benigna familiar del lactante Epilepsia mioclónica del lactante

Encefalopatías epilépticas y del neurodesarrollo I


	Causa	Debut	Crisis	Clínica	EEG	тто
Síndrome de West	Estructural Metabólica Genética	4 – 12 meses (< 2 años)	Espasmos en salvas durante 5-10 min	Regresión o estancamiento del DPM	Hipsarritmia	ACTH Corticoides Vigabatrina Dieta cetogénica
Síndrome de Dravet	Alteración gen SCN1A	3 – 9 meses (< 18 meses)	Al debut: hemiclonías > 10 min A partir de 2 años: mioclónicas, ausencias, parciales	Restraso DPM a partir del año Déficit cognitivo Marcha atáxica	No específico: enlentecimiento difuso, crisis multifocales	Triterapia (VPA + estiripentol + clobazam) Topiramato
Epilepsia focal migratoria	70% Alteración genética (KCNT1, SCN2A)	3 – 6 meses (< 12 meses)	Fases: 1. Crisis focales 2. Estatus farmacorresistente 3. Crisis con desencadenantes	Fase 3: crónica a partir del año Retraso DPM	Patrón migratorio de la crisis con actividad paroxística multifocal	Farmaco-resist. Estiripentol Clonazepam Levetiracetam

Encefalopatías epilépticas y del neurodesarrollo I

	Causa	Debut	Clínica	TTO
Encéfalopatías de causa metabólica	Déficit de piridoxina Déficit del trasportador de glucosa cerebral (<i>GLUT1</i>) Trastornos mitocondriales Aminoacidopatías Acidurias orgánicas Síndrome de Menckes	Neonatal Lactante	Afectación sistémica Organomegalias Rasgos dismórficos	Vitamina B6 (piridoxina) + B7 (biotina) + B9 (folínico) Fármaco-resistencia a FAE TTO específico
Síndromes específicos de causa genética	Genes implicados: STXBP1, ARX, SLC25A22, KCNQ2, CDKL5, SCN1A, SCN2A, STXBP1, POLG, SC2A1, y PCDH19	Neonatal Lactante	Rasgos dismórficos Alteración del DPM Discapacidad intelectual Focalidad neurológica Crisis en clusters	Fármaco-resistencia a FAE

Síndromes autolimitados

	Causa	Debut	Crisis	Clínica	EEG	TTO
Crisis febriles plus	Genética SCN1B, SLC32A1, STX1B	Primer año de vida	Febriles y afebriles Tonico-clónicas generalizadas, ausencias, mioclónicas, atónicas	Historia familiar Remite en la adolescencia		VPA Levetiracetam Lamotrigina
Epilepsia mioclónica benigna	Desconocida	6 meses – 2 años	Crisis mioclónicas (caída cefálica con revulsión ocular)	Afectación del DPM si no FAE Resolución espontánea: 6 meses - 5 años	Complejos polipunta-onda generalizados Trazado de base normal	VPA Levetiracetam Clonazepam
Epilepsia benigna familiar y no familiar	Genética PRRT2 (90%) SCN2A, KCNQ, KCNQ3	3 – 20 meses	(versión oculo-cefálica, clonías hemifaciales,		Descarga focal con puntas Trazado de base normal	Carbamacepina Febobarbital VPA

04

Conclusiones

- I) La enfermedad de Menckes es un trastorno congénito, raro y letal del metabolismo del cobre causado por una variante patogénica del gen ATP7A
- II) Se hereda de forma **recesiva ligada al X** por lo que las mujeres son portadoras y los hombres expresan la enfermedad
- III) Existen 3 fenotipos de la enfermedad de inicio en la edad pediátrica: clásica (EMC), atípica (EMA) y el síndrome del cuerno occipital (SCO); no se relacionan con el genotipo
- IV) La EMC debuta a los 2-3 meses de vida con epilepsia refractaria en un lactante varón con pelo escaso, hipopigmentado y ensortijado
- V) En el SCO predominan las alteraciones musculo-esqueléticas (exostosis, laxitud articular y cutánea, hernias) y la diarrea
- VI) El hallazgo de pili torti en la tricoscopia y la tortuosidad de vasos intracraneales son hallazgos muy típicos y frecuentes en todos los subtipos de la EM
- VII) El bajo nivel de ceruloplasmina sérica es más específico de la EM, mientras que el nivel plasmático de cobre puede ser normal, sobre todo en época neonatal
- VIII) El tratamiento con cobre-histidina mejora el pronóstico y cambia el curso de la enfermedad si se inicia antes de la aparición de la sintomatología neurológica
- IX) El diagnóstico diferencial debe incluir las encefalopatías epilépticas y del neurodesarrollo

05

Bibliografía

- 1. De Feyter S, Beyens A, Callewaert B. ATP7A-related copper transport disorders: A systematic review and definition of the clinical subtypes. J Inherit Metab Dis. 2023; 46(2): 163-173.
- 2. Kaler SG, DiStasio AT. *ATP7A*-Related Copper Transport Disorders. En: Adam MP, Feldman J, Mirzaa GM, et al. (eds). GeneReviews®. Seattle: 2003 [actualizado en 2021] [Internet] [consultado: 1 Abr 2024]. Disponible en: https://www.ncbi.nlm.nih.gov/books/NBK1413/
- 3. Vairo FPE, Chwal BC, Perini S, Ferreira MAP, de Freitas Lopes AC, Saute JAM. A systematic review and evidence-based guideline for diagnosis and treatment of Menkes disease. Mol Genet Metab. 2019; 126(1): 6-13.
- 4. Means MJ, Santos FJR, Sotardi ST, Beslow LA. Menkes Disease: Clinical Presentation and Imaging Characteristics. Neuropediatrics. 2022; 53(3): 218-220.
- 5. Fujisawa C, Kodama H, Sato Y, et al. Early clinical signs and treatment of Menkes disease. Mol Genet Metab Rep. 2022; 31:100849.
- 6. Panichsillaphakit E, Kwanbunbumpen T, Chomtho S, Visuthranukul C. Copper-histidine therapy in an infant with novel splice-site variant in the *ATP7A* gene of Menkes disease: the first experience in South East Asia and literature review. BMJ Case Rep. 2022; 15(4): e247937.
- 7. Tümer Z, Møller L. Menkes disease. Eur J Hum Genet. 2010; 18: 511–518.
- 8. Guthrie LM, Soma S, Yuan S, Silva A, Zulkifli M, Snavely TC, et al. Elesclomol alleviates Menkes pathology and mortality by escorting Cu to cuproenzymes in mice. Science. 2020; 368(6491): 620-625.

Servicio de

- 9. Soto Insuga V, Miravet Fuster E, Sánchez Carpintero R. Epilepsia en el lactante. Protoc diagn ter pediatr. 2022; 1:399-407.
- 10. Shellhaas R. Overview of infantile epilepsy syndromes. En: Nordli DR, Garcia-Prats JA, Dashe JF (eds). UptoDate. [inter 1 Abr 2024]. Disponible en: https://www-uptodate-com.a-hgene.a17.csinet.es/contents/overview-of-infantile-epilepsy-syndromes

Enfermedad de Menckes

¡Gracias por vuestra atención!

Email: m.jimenezmonedero@gmail.com

