Todo lo que conviene saber sobre estudios de intervención terapéutica (el ENSAYO CLÍNICO)

Javier González de Dios

Servicio de Pediatría.

Hospital General Universitario de Alicante
Co-director de la revista "Evidencias en Pediatría"

Curso: ¿Cómo sobrevivir a la PBE?

Valencia, 26 marzo 2010

Tipos de estudios epidemiológicos

Experimentales

Manipulación Aleatorización

Cuasi-experimentales

Manipulación No aleatorización

No experimentales

No manipulación No aleatorización

Decriptivos:

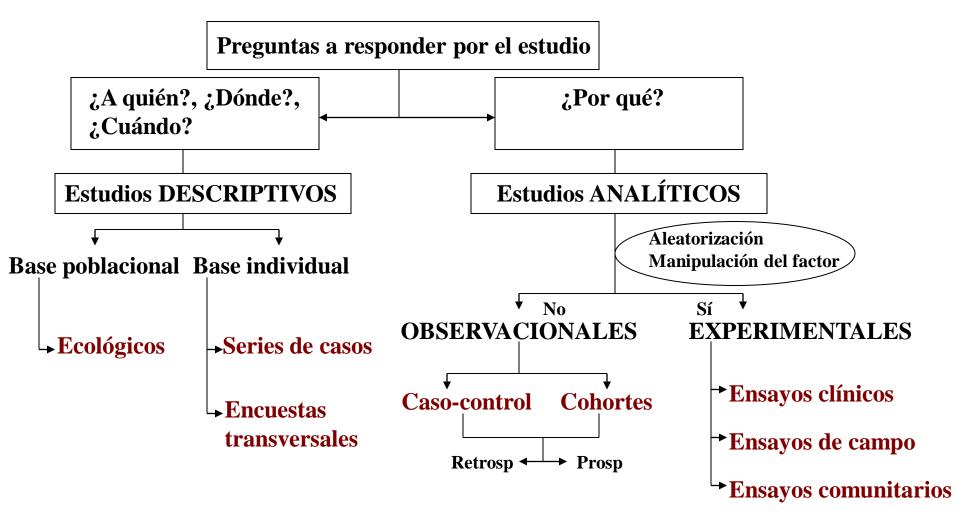
1. Base poblacional:

Estudios ecológicos

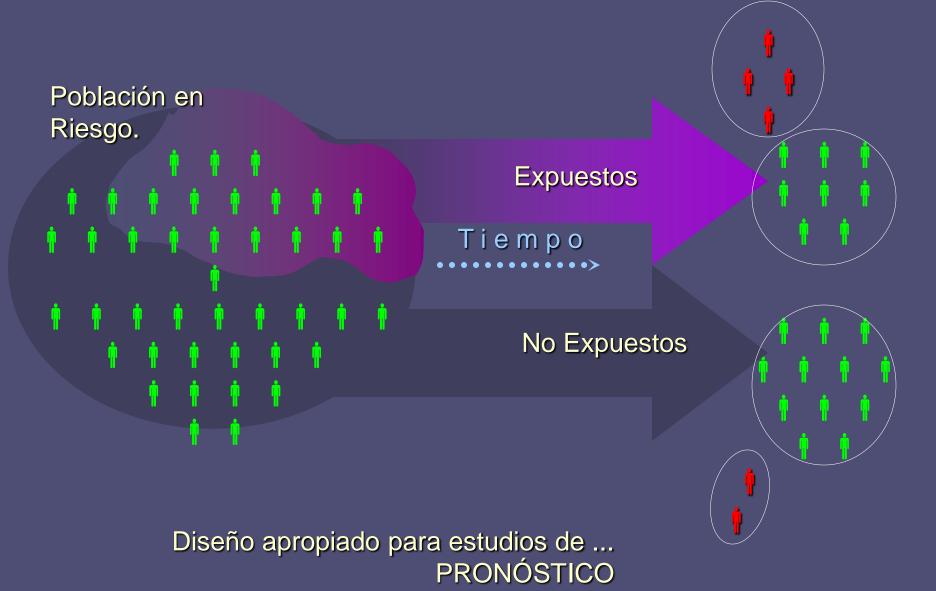
2. Base individual:

- Transversales / prevalencia
- Series de casos
- Casos único

Analíticos:

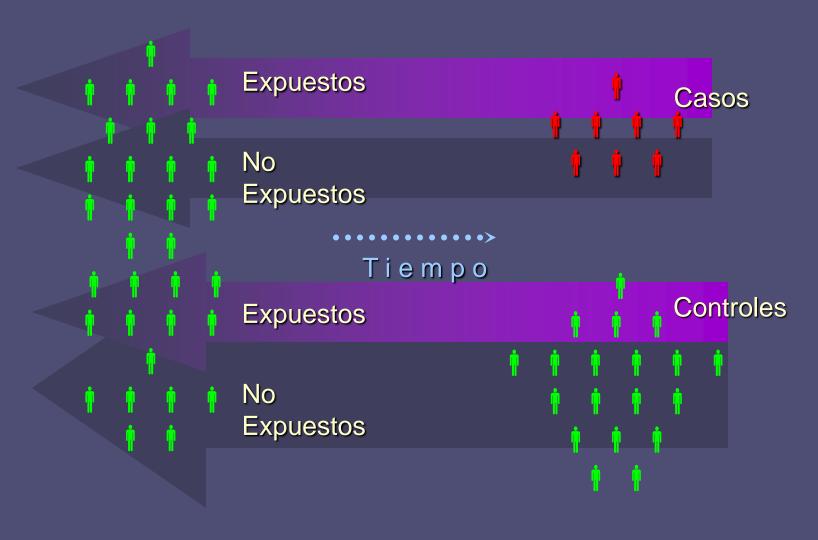

1. Observacionales:

- Estudios de casos y controles
- Estudios de cohortes


2. Experimentales:

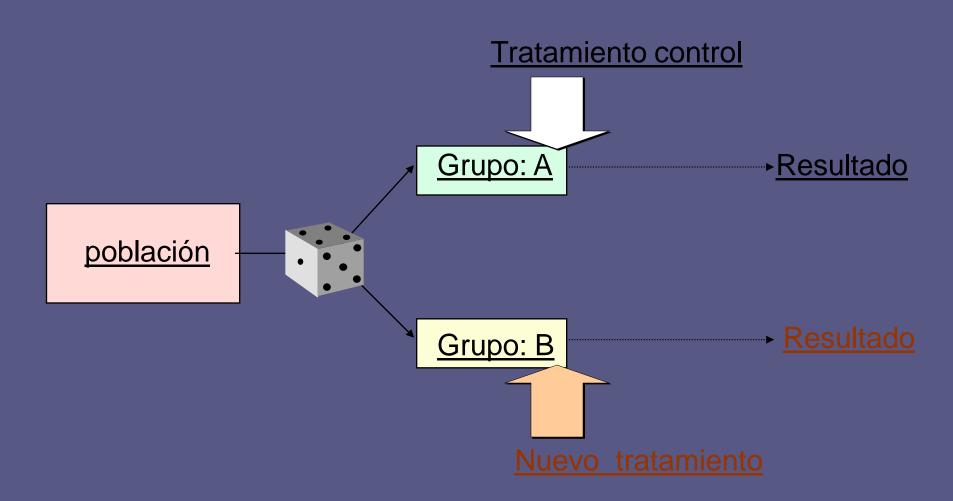
- Ensayo clínico
- Ensayo de campo
- Ensayo comunitario

Calidad de la evidencia científica-TIPOS DE DISEÑO:



Estudios de cohortes

... RIESGOS


Estudios de Casos-control

Diseño apropiado para estudios sobre CAUSALIDAD

Punto de Partida

ECAensayos clínicos controlados aleatorizados

La importancia de los ECA

Cómo discriminar los tratamientos eficaces (los que tienen más probabilidades de producir + beneficios que perjuicios)

... de los que no lo son

(Diferenciar: eficacia --> efectividad --> eficiencia)

Estudios sobre eficacia del dietil-estil-bestrol ante los abortos de repetición

Nº. estudios	Nº pacientes	Nº de RN vivos	
		TRATADOS	CONTROLES
EOS 4 (Estudios observacionales	2358	85.3 %	56 %
ECAS 3 (Ensayos clínicos controla	2175 dos)	87.3 %	87.6 %

ECA: una fuente clave de "evidencias"

- Ensayo clínico
 - » (estudio experimental prospectivo)
- Controlado
 - » (grupo sin tt^o => placebo o tt^o estándar)
- Asignación aleatoria
 - » (aleatorizado o "randomizado")

Características del ensayo clínico

Ventajas

Mayor control en el diseño
Menos posibilidades de sesgos
Repetibles y comparables con otras
experiencias

Limitaciones

Coste elevado

Limitaciones de tipo ético y responsabilidad en la manipulación de la exposición Dificultades en la generalización

MANIPULACIÓN:

que sólo difieran en la intervención que estamos estudiando

Los elementos más importantes del ECA son:

ALEATORIZACIÓN: que las poblaciones sean lo más similares posibles

Terapéuticos (o de prevención secundaria): sobre población enferma

Clasificación de los ECA:

Fase II Fase III Fase IV

Preventivos (o de prevención primaria): sobre población sana

ECA fase I:

- Primera administración en humanos
- Muestra: inferior a 100 (gte hombres jóvenes)
- Objetivo: buscar la dosis máxima tolerada y se suelen medir aspectos farmacocinéticos

ECA fase II:

- Primera admistración en enfermos
- Muestra: 100 a 200
- Objetivo: comparar con mejor tratamiento (o placebo en su defecto) para establecer relación preliminar de eficacia/toxicidad y dosis óptima

ECA fase III:

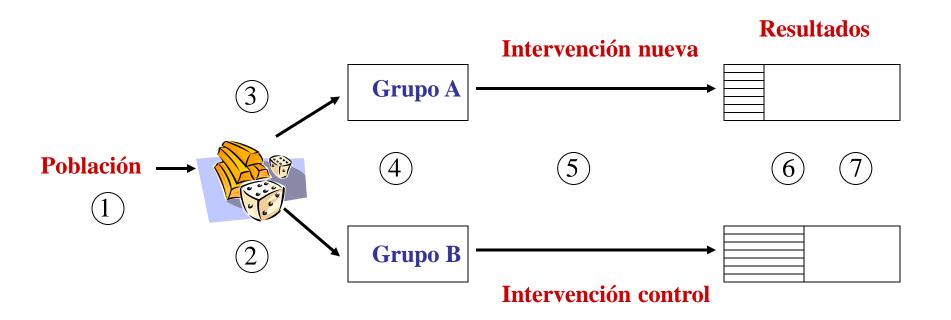
- Administración en enfermos
- Muestra: cientos o miles de pacientes
- Objetivo: relación eficacia/toxicidad

ECA fase IV (estudios de farmacovigilancia):

- Seguimiento del fármaco tras su comercialización
- Muestra: cientos o miles de pacientes
- Objetivo: detectar eficacia/toxicidad a largo plazo; pte efectos adversos con frecuencia < 1:1000

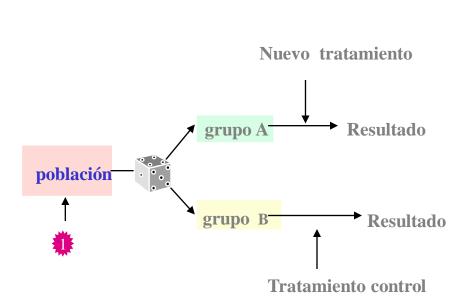
Explicativo:

conocer la eficacia (y seguridad) en condiciones controladas


Según el propósito del ECA:

Pragmático:

conocer la efectividad, aceptación y costo de los medicamentos en condiciones reales


Fundamentos y metodología del ensayo clínico: 7 pasos a seguir

- 1.- Pregunta clínica estructurada
- 2.- Aleatorización
- 3.- Secuencia de aleatorización oculta
- 4.- Enmascaramiento
- 5.- Seguimiento completo
- 6.- Resultados: análisis por intención de tratar
- 7.- Resultados: expresión

1.- La pregunta estructurada

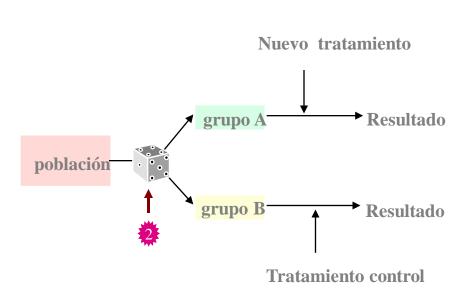
- Permite saber si el ensayo puede responder a nuestra pregunta clínica.
- Se diseña para responder a una pregunta formulada a priori.
- Preferible enfoque a una pregunta concreta y no a muchas diferentes.

El acrónimo PEcOt

P • el paciente o problema de interés

Ε

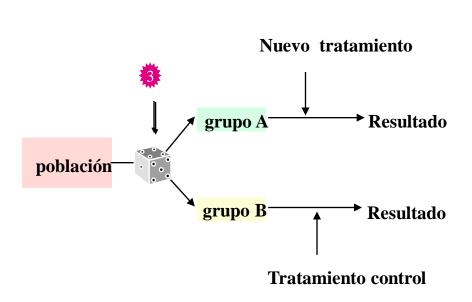
0


· la exposición o intervención que se va estudiar

• la comparación con otra intervención (si procede)

la variable(s) que se valoran

• el tiempo de seguimiento


2.- Aleatorización

 En muestras grandes tiende a equiparar las características basales de los grupos

 ...Tanto las observables como las desconocidas.

3.- Secuencia oculta aleatorización

- Ideal: comunicación indirecta o a distancia entre investigador y central de aleatorización.
- Evita: tendencia (consciente o no) a incluir ciertos pacientes, (st f los de mejor pronóstico) en el tt^o experimental.

· Previene el sesgo de selección !

Medidas de ocultación de la aleatorización

Medidas de ocultación apropiadas:

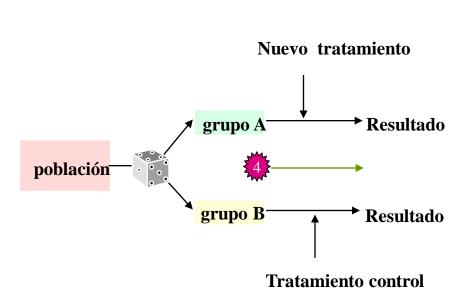
Esquema aleatorio centralizado

Envases numerados o codificados

Sistema informatizado en el centro de investigación o codificado

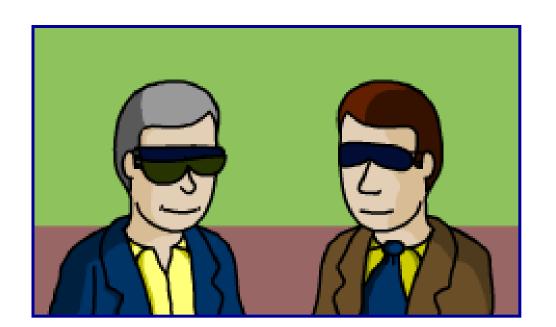
Sobres de asignación (especificando detalles)

Medidas de ocultación confusas:

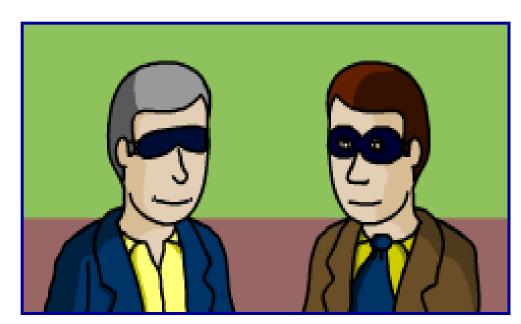

Uso de sobres Asignación aleatoria correcta (pero sin detalles)

Medidas de ocultación inapropiadas:

Alternancia


Número de historia, fechas de nacimiento, días de la semana, etc Procedimiento de asignación totalmente transparente

4.- Cegamiento (enmascaramiento)



- Evita las cointervenciones diferenciales y la evaluación subjetiva de los resultados.
- A veces: no es posible (pe. en cirugía, etc.)
- ...intentar al menos en la evaluación de resultados.

· Previene el sesgo de detección!

Doble ciego vs ciego simple

Ciego simple vs enmascarado

Beneficios del cegamiento

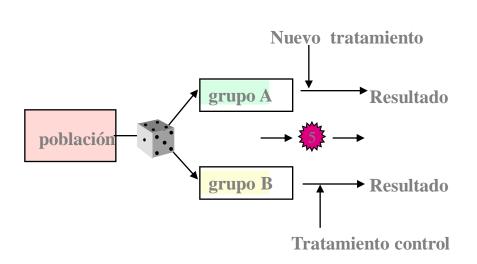
Pacientes:

Menor posibilidad de una respuesta (física o psíquica) debida al tto Mejor cumplimiento

Menor posibilidad de que busque cointervenciones adicionales Menos probable de que abandone el estudio

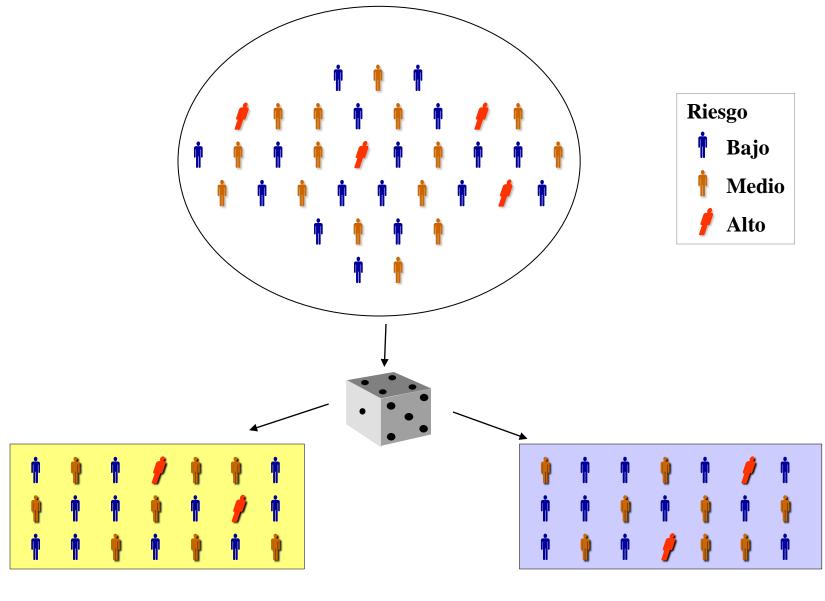
Investigadores:

Menor posibilidad de que transfieran sus preferencias o actitudes a los pacientes


Menor probabilidad de administración diferencial de cointervenciones Menor probabilidad de ajustar dosis o retirar pacientes de manera diferenciada

Menor probabilidad de animar o desanimar a los participantes para que continúen en el estudio

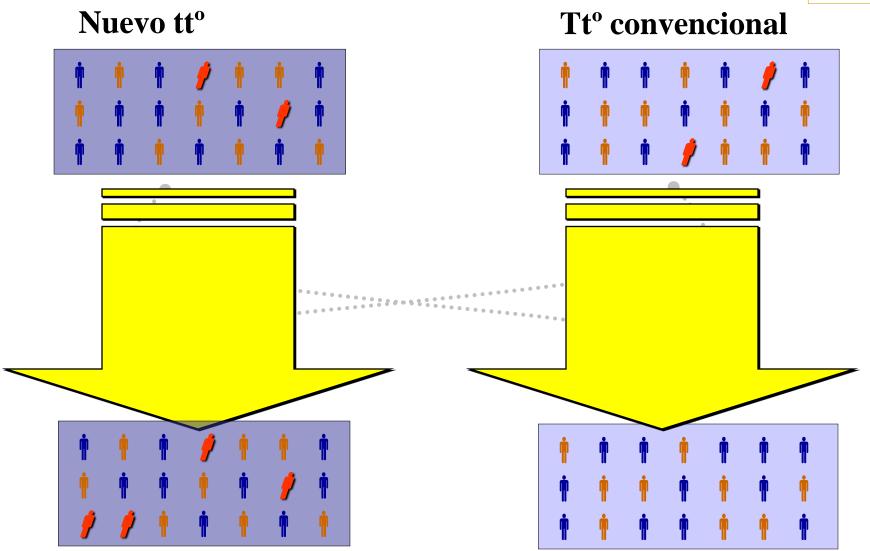
Evaluadores:


Menor posibilidad de una evaluación sesgada de las variables (pte de las subjetivas)

5.- Seguimiento completo

- El resultado de los pacientes perdidos podría haber cambiado el resultado global del estudio.
- Más grave si hay una ≠ imp. en el nº de pérdidas en los dos grupos.
- Análisis de sensibilidad

· Previene el sesgo de desgaste!

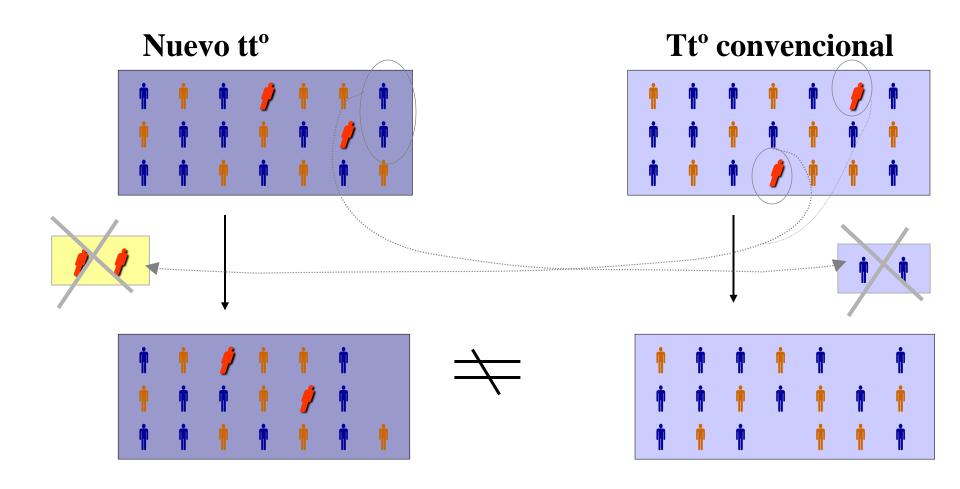


Nuevo tt^o !!

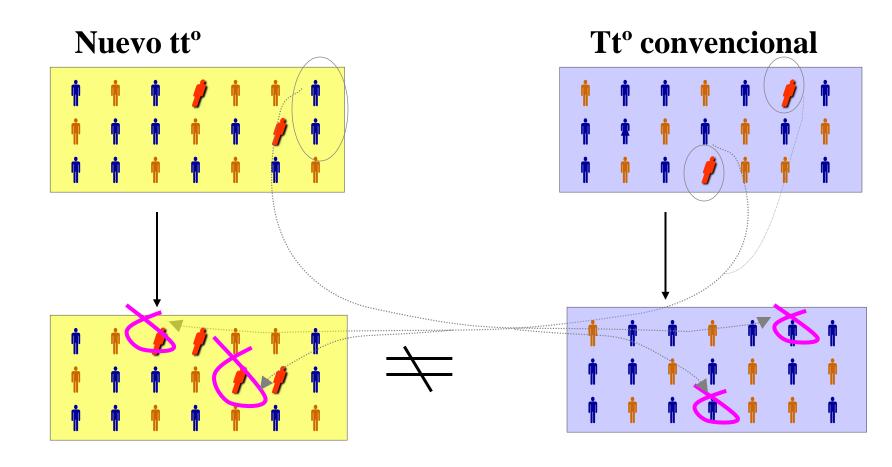
Tt^o convencional

Algunos pacientes NO recibieron el tt^o asignado aleatoriamente

Estrategias del manejo de las pérdidas

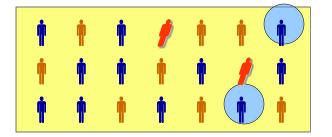

1. Rechazar el estudio

2. Exclusión

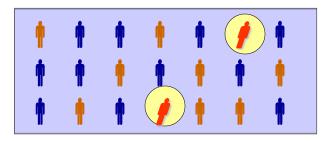

3. Análisis por tratamiento

4. Análisis por intención de tratar

Estrategia de exclusión



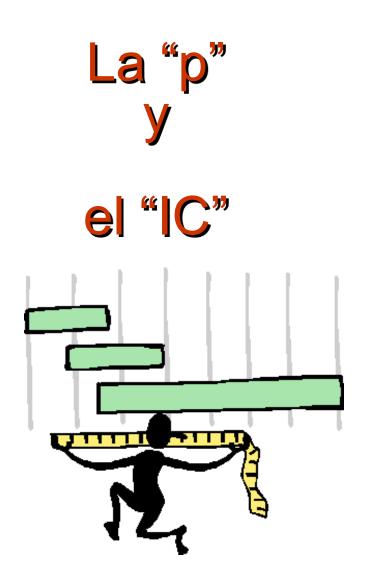
Estrategia de análisis por tratamiento



6.- Análisis por intención de tratar

Nuevo tto

Tt^o convencional



Se analizan los pacientes como pertenecientes al grupo que les tocó (independientemente de que hayan abandonado, cambiado, etc...)

VENTAJAS:

- Única estrategia que conserva las ventajas que se adquieren por la asignación aleatoria de los participantes.
- se aproxima a la realidad de la práctica clínica (APROXIMA A LA EFECTIVIDAD)

7.- Expresión de los resultados

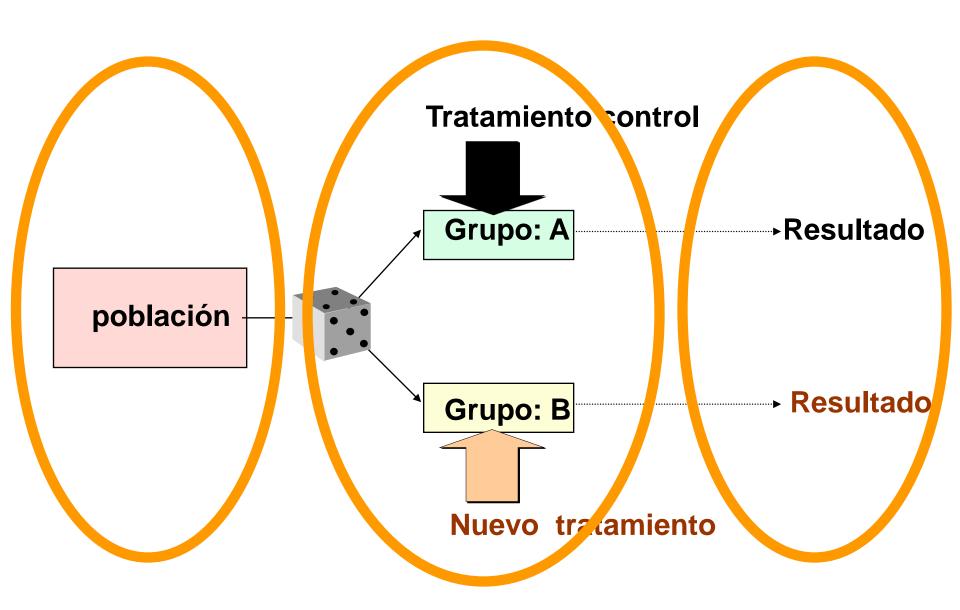
Muera la "p"...

Valor de p:

- P<0.05 valor convencional
- Indica que la diferencia detectada tiene menos del 5% de posibilidades de que se haya producido por azar
- Arbitrariamente se le atribuye el valor de que la diferencia encontrada "es estadísticamente significativa"

¡¡ No indica para nada que la diferencia sea clínicamente importante!!

Mejor utilizar IC


... viva el "intervalo de confianza"

95% IC (intervalo de confianza)

Rango dentro del cual está el valor real (con un 95% de confianza)

A + corto es el IC mas certeza tenemos en el resultado

Si el IC cruza la línea del 1 (=> no efecto terapéutico), la intervención podría no ser beneficiosa y, en cambio, tener efectos perjudiciales.

Ensayo clínico

- Grupos (población): comparables
- Procedimientos (intervenciones y mediciones de las variables): estandarizados
- Valoraciones: objetivas

Etica del estudio (no hacerlo si ya hay pruebas suficientes!!)

¡ Los números!

Ttº: expresión de resultados

(N= 200)

	+	No ev	<u>Tot</u>
Experim.	3	97	<u>100</u>
Control	5	95	<u>100</u>

Tratamiento nuevo que reduce la aparición de IAM en hipertensos entre 40-65 a con HTA moderada

Reduce un 40% el riesgo en estos pacientes

En algunos pocos casos se ha detectado una leve a moderada afectación de la función renal

Ttº: expresión de resultados

(N = 200)

 $3 \times 95 = 285$

	+	No ev	<u>Tot</u>	RA:	Riesgo Absol.
Experim.	3	97	<u>100</u> <u>3/100</u>	0.03	RA exp.
Control	5	95	<u>100</u> <u>5/100</u>	0.05	RA ctrl.

<u>Riesgo Relativo (RR)</u>

Cuanto es un 3% respecto 5%? 0,03 / 0,05 =0.6 (60%) 5 x 97= 485

RAR: 0.05 - 0.03= 0.02

RAR: Reducción

3=0.02
Absoluta
de Riesgo

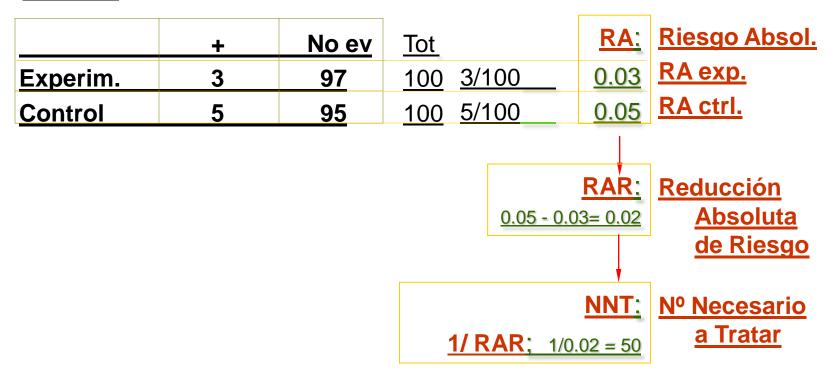
Cuanto se ha reducido el riesgo?

RRR = RAR / RA ctrl; 2% / 5% ~ 40%

Odds (suerte, probabilidad)

- Cuanto es 3 respecto 97?; 3 / 97 =0,031
- Cuanto es 5 respecto 95?; 5 / 95 =0,053

Odds Ratio (OR)


ctrl - ev ctrl) / ev ctrl x (N ex - ev ex);

0.031 / 0.053 = 0.058

>> Interpretable como RR si prevalencia baja

Tt^o: expresión de resultados

(N= 200)

Si de 100 he salvado 2; para salvar a 1 ¿cuantos hubiera tenido que tratar?

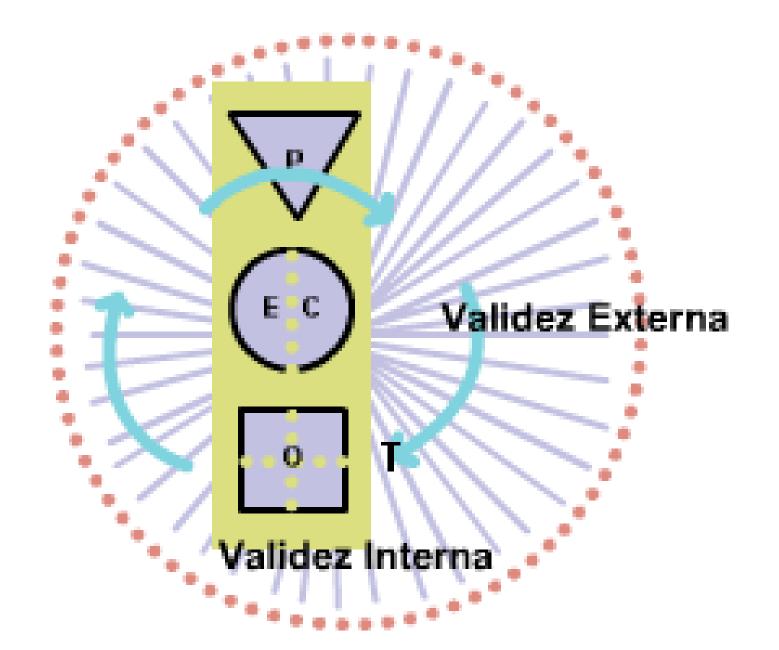
Nº de personas que se necesitaría tratar para producir, o evitar, la aparición de un evento determinado

por ejemplo: Nº de niñosque han sufrido una ITU que han de recibir prevención antibiótica para prevenir 1 muerte

Relación entre resultados y verdadera diferencia

CONSTRASTE DE HIPOTESIS Decir que SI hay diferencia Diferencia Verdadera ... cuando NO LA HA (Ho falsa) (Ho verdadera) Presente Ausente Resultado Error tipo I No error diferente (tto OK) (correcto) (α) Rechazamos Ho Conclusión de la prueba estadística Resultado Error tipo II No error no diferente **(B)** (correcto) Aceptamos Ho

Decir que NO hay diferencia ... cuando SI LA HAY


Precisión y validez (interna y externa) del ensayo clínico

PRECISIÓN: carencia de ERROR ALEATORIO

Meta investigación: agudeza en la medición

VALIDEZ: carencia de ERROR SISTEMÁTICO

Error aleatorio (PRECISIÓN)

Error sistemático (VALIDEZ)

Estrategias en la fase de análisis Calcular la significación estadística o los intervalos de confianza

Tener buen criterio: leer un texto de epidemiología clínica (ver bibliografía)

Estrategias en la fase de diseño Aumentar el tamaño de la muestra o incrementar la precisión

Mejorar el diseño

a) Validez interna

Es la respuesta a la pregunta:

¿son correctas las conclusiones del estudio para los pacientes que están siendo estudiados?

Para conseguir una buena calidad se deben minimizar los:

- Errores aleatorios: por azar
- Errores sistemáticos (o sesgos): por diseño o medición imperfectos

SESGOS potenciales en los EC (1)

Asignación a los grupos de tratamiento:

- -Asignación no aleatoria
- -Asignación seudoaleatoria
- -Falta de ocultación de la asignación

• Enmascaramiento:

- -Falta de enmascaramiento o enmascaramiento incompleto del observador
- -Falta de enmascaramiento o enmascaramiento incompleto del paciente
- -Análisis estadístico no enmascarado

• Seguimiento de los participantes:

-Insuficiente descripción de los retirados y los abandonados

Análisis estadístico:

- -Análisis que no respeta la asignación a los tratamientos
- -Aplicación de técnicas estadísticas incorrectas
- -Análisis de subgrupos sobrevalorados

SESGOS potenciales en los EC (2)

Otros aspectos del diseño:

- -Uso de variables intermedias o "subrogadas", en lugar de variables clínicas
- -Ensayos cruzados

Aplicabilidad:

- -Insuficiente aplicación de sistemas de monitorización y de garantía de calidad
- -Ensayos unicéntricos en lugar de multicéntricos
- -Publicación en revistas de menor difusión
- -Ensayos financiados por la industria farmacéutica publicados en suplementos de revistas médicas

Algunos errores sistemáticos y su solución

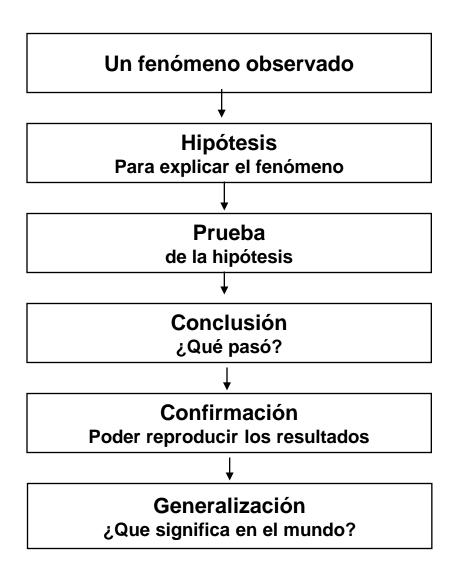
- Sesgo de selección:
 - Diferencias sistemáticas de los grupos a comparar
 - Solución: ASIGNACION ALEATORIA Y OCULTA
- Sesgo de realización:
 - Diferencias en la atención sanitaria proporcionada independiente de la intervención en estudio.
 - Solución: CIEGO
- Sesgo de desgaste:
 - Diferencias sistemáticas en el tratamiento de las pérdidas.
 - Solución: Descripción explícita de lo ocurrido con las pérdidas ITT - Análisis de sensibilidad.
- Sesgo de detección:
 - Diferencias sistemáticas en la evaluación de los resultados
 - Solución: CIEGO

b) Validez externa

Es la respuesta a la pregunta:

¿son aplicables las conclusiones del estudio para mis pacientes?

Es el grado en que los resultados y conclusiones de un estudio clínico pueden ser aplicados (extrapolados o generalizados) a otros contextos


IMPORTANTE:

Cada estudio está condicionado por sus elementos básicos: población, exposición, comparación, *outcomes* (efectos o resultados) y tiempo de seguimiento (**PEcOt**). Esos elementos de un estudio nunca serán idénticos en cualquier otra situación. Por eso cuanto más generales o amplios hayan sido en el estudio, en más diferentes contextos serán aplicables sus conclusiones

Herramientas útiles en el ensayo clínico: CONSORT, GATE, CASPe

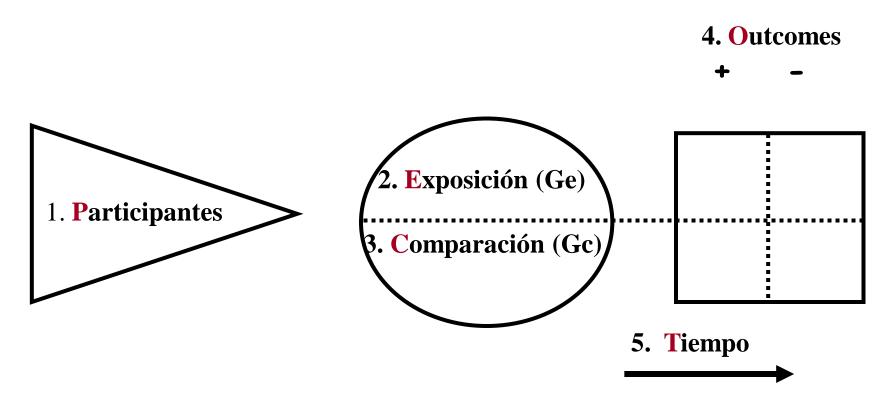
El método científico

Diseño general de un ensayo clínico

-Definir el objetivo: variable principal de valoración (end point)

-Diseñar el estudio:

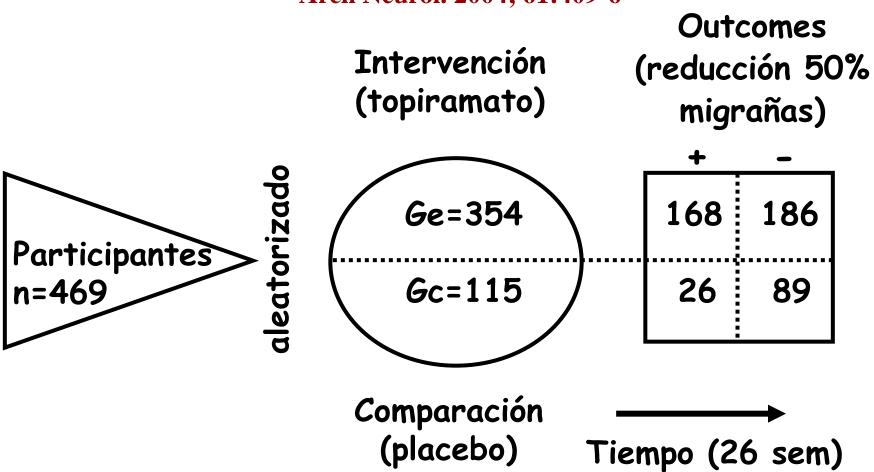
Criterios de inclusión y exclusión Comparabilidad de los grupos: aleatorización Medición objetiva de los resultados: enmascaramiento Considerar las pérdidas: pre y posaleatorización


- -Realizar el estudio: monitor de EC
- -Analizar los datos: tamaño muestral, significación estadística, precisión, análisis por intención de tratar
- -Recogida de acontecimientos adversos
- -Aspectos éticos
- -Extraer conclusiones

Propuesta CONSORT para la evaluación de ensayos clínicos

- Título
- Resumen
- Introducción
- Métodos: Protocolo
 Aleatorización
 Enmascaramiento
 Método estadístico
- Resultados: Flujo de pacientes
 Análisis estadístico
 Efectos adversos
- Discusión: Interpretación
 Generalización
 Nivel de evidencia

GATE: Generic Appraisal Tool for Epidemiology (Rod Jackson)



Valoración crítica con dibujos: los 5 elementos de PECOT

GATE: ensayos clínicos

"Topiramate in migraine prevention. Results of a large controlled trial".

Arch Neurol. 2004; 61:409-6

PREGUNTAS para valoración crítica de artículos sobre TRATAMIENTO

A.- ¿Son válidos los resultados del ensayo clínico? VALIDEZ

Preguntas de eliminación:

- 1.-¿Se orienta el ensayo a una pregunta claramente definida?
- 2.-¿Fue aleatoria la asignación de los pacientes a los tratamientos?
- 3.-¿Fueron adecuadamente considerados hasta el final del estudio todos los pacientes que entraron en él?

Preguntas de detalle:

- 4.-¿Se mantuvieron ciegos al tratamiento los pacientes, los clínicos y el personal del estudio?
- 5.-¿Fueron similares los grupos al comienzo del ensayo?
- 6.-¿Al margen de la intervención en estudio los grupos fueron tratados de igual modo?

B.- ¿Cuáles son los resultados? IMPORTANCIA

- 7.-¿Cómo de grande fue el efecto del tratamiento?
- 8.-¿Cómo es la precisión de la estimación del efecto del tratamiento?

C.- ¿Pueden ayudarnos estos resultados? APLICABILIDAD

- 9.-¿Pueden aplicarse estos resultados en tu medio o población local?
- 10.-¿Se tuvieron en cuenta todos los resultados de importancia clínica?
- 11.-¿Los beneficios a obtener justifican los riesgos y los costes?

Preguntas sobre la VALIDEZ (1)

Preguntas de eliminación (criterios primarios):

• ¿Se orienta el EC a una pregunta claramente definida?

Una pregunta debe definirse en términos de: -(P) población de estudio

-(E) exposición realizada

-(O) resultados considerados

Mejor una sola pregunta, y end point fuerte

• ¿Se ha realizado de forma aleatoria la asignación de los tratamientos a los pacientes?

¿Se mantuvo oculta la secuencia de aleatorización?

• ¿ Se han mantenido en cuenta adecuadamente todos los pacientes incluidos en el EC y se los ha considerado a la conclusión del mismo?, ¿se ha realizado un seguimiento completo?

Pérdidas prealeatorización

Pérdidas postaleatorización (abandonos -drop out- y retiradas -withdrawal-)

Preguntas sobre la VALIDEZ (2)

• ¿Se han analizado los pacientes en los grupos a los que fueron asignados aleatoriamente, según análisis por intención de tratar?

Conserva las ventajas de la aleatorización y se aproxima a la realidad de la práctica clínica, frente a el análisis por tratamiento (o protocolo)

Preguntas de detalle (criterios secundarios):

• ¿Se ha mantenido un diseño ciego respecto al tratamiento aplicado?

Tipos de sesgo

Enmascaramiento evita sesgos en el paciente (efecto placebo, efecto nocevo, sesgo de retirada) y el investigador (sesgo de evaluación, sesgo de retirada)

• ¿ Eran similares los grupos al inicio del EC?

En términos de otros factores que pudieran tener efecto sobre el resultado: edad, sexo, etc

• ¿ Se han tratado a los grupos de la misma forma, aparte de la intervención experimental?

Cointervenciones

Preguntas sobre la IMPORTANCIA

• ¿Cuál ha sido la magnitud del efecto de tratamiento?

```
¿Qué resultados se midieron?
¿Qué estimadores se usaron?
```

Medidas de fuerza de asociación: RR, OR Medidas de impacto: RRR, RRA, NNT (IRR, IRA, NND)

• ¿Con qué precisión se ha estimado el efecto del tratamiento?

¿Cuáles son sus intervalos de confianza?

Preguntas sobre la APLICABILIDAD

• ¿Son aplicables los resultados a nuestros pacientes y en nuestro medio?

¿Crees que los pacientes incluidos en el EC son suficientemente parecidos a mis pacientes? Tener en cuenta aspectos biológicos, epidemiológicos, sociales y económicos Ser cautelosos con los análisis de subgrupos

• ¿Cuál sería el beneficio potencial de la aplicación de la intervención en este paciente?

Considerar variables finales fuertes, y precaución con las variables intermedias

• ¿Se han considerado todos los resultados clínicamente importantes?

En caso negativo, ¿en qué afecta eso a la decisión a tomar?

• ¿Compensan los beneficios del tratamiento, los costes y riesgos del mismo?

Es improbable que pueda deducirse del EC, pero ¿qué piensas tu al respecto?

• ¿La intervención y sus consecuencias satisfacen los valores y preferencias de los pacientes?

Es un aspecto cada vez más importante a tener en cuenta